Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition.

نویسندگان

  • Yin-Hung Lai
  • Chia-Chen Wang
  • Chiu Wen Chen
  • Bo-Hong Liu
  • Sheng Hsien Lin
  • Yuan Tseh Lee
  • Yi-Sheng Wang
چکیده

This investigation concerns the initial chemical reactions that affect the ionization of matrixes in matrix-assisted laser desorption/ionization (MALDI). The study focuses on the relaxations of photon energy that occur on a comparable time scale to that of ionization, in which the available laser energy is shared and the ionization condition is changed. The relaxations include fluorescence, fragmentation, and nonradiative relaxation from the excited state to the ground state. With high absorption cross section and long excited-state lifetime, photoionization of matrix plays an important role if sufficient laser energy is used. Under other conditions, thermal ionization of the molecule in the ground state is predicted to be one of the important reactions. Evidence of change in the branching ratio of initial reactions with the matrix and the excitation wavelength was obtained with α-cyano-4-hydroxycinnamic acid, sinapinic acid, 2,5-dihydroxybenzoic acid, and 2,4,6-trihydroxyacetophenone. These matrixes are studied by obtaining their mixed crystal absorption spectra, fluorescence properties, laser-induced infrared emission, and product ions. The exact ionization pathway depends on the chemical properties of matrixes and the excitation conditions. This concept may explain the diversity of experimental results observed in MALDI experiments, which provides an insight into the ensemble of chemical reactions that govern the generation of ions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Dimensional Simulation of n-Heptane Combustion under HCCI Engine Condition Using Detailed Chemical Kinetics

In this study, an in-house multi-dimensional code has been developed which simulates the combustion of n-heptane in a Homogeneous Charge Compression Ignition (HCCI) engine. It couples the flow field computations with detailed chemical kinetic scheme which involves the multi-reactions equations. A chemical kinetic scheme solver has been developed and coupled for solving the chemical reactions an...

متن کامل

Optimization of solvothermally synthesized ZIF-67 metal organic framework and its application for Cr(VI) adsorption from aqueous solution

In this study, ZIF-67 was synthesized through solvothermal method to remove Cr(VI) ions from aqueous solution. To improve the structural properties of ZIF-67 and its adsorption capacity, optimization of the synthesis conditions was carried out based on maximum Cr(VI) uptake. From experiments, the optimum condition was revealed as solvent: metal ion molar ratio of 4.6:1, ligand: metal ion molar ...

متن کامل

Ab initio (first principle) material modeling study on Lio adsorbed by palladium-cobalt (PdCo) nanoparticles

PdCo subnanoalloys have been commonly used as a catalytic material in some important chemicalreactions, involving in fisher-tropsch reactions, and oxygen reduction reactions. In terms ofunderstanding the role of catalysis, these smallest bimetallic nanoparticles provide the simplestprototypes of Pd-Co bimetallic catalysts for different compositions. In this study, the effect o...

متن کامل

An Investigation on Milling Method in Reduction of Magnesium Nano-Powder Particles Based on Sustaining Chemical Activity

Magnesium has been used in aviation industries, automobile manufacturing, electronics and medical engineering due to its unique properties thus far. The main problem in its utilization is the high reactivity of magnesium with oxygen and humidity, which both changes its properties. The surface charge and different density results in difficulties in dispersion stability of the powder in an ...

متن کامل

A comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test

In this research, the modal parameters of a beam in free-free condition are extracted by performing different experiments in laboratory. For this purpose, two different techniques are employed. The first methodology is considered as a time domain method in Operational Modal Analysis. While the other one is frequency domain impact hammer test which is categorized as an Experimental Modal Analysi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 32  شماره 

صفحات  -

تاریخ انتشار 2012